Environmental Science Honors (Course Number: 2001341)

This document was generated on CPALMS - www.cpalms.org

<table>
<thead>
<tr>
<th>Course Number: 2001341</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Path: Grades PreK to 12 Education Courses > Grade Group: Grades 9 to 12 and Adult Education Courses > Subject: Science > SubSubject: Environmental Science > Abbreviated Title: ENV SCI HON</td>
</tr>
<tr>
<td>Number of Credits: One (1) credit</td>
</tr>
<tr>
<td>Course Length: Year (Y)</td>
</tr>
<tr>
<td>Course Attributes: Honors</td>
</tr>
<tr>
<td>Course Type: Core Academic Course</td>
</tr>
<tr>
<td>Course Status: Course Approved</td>
</tr>
<tr>
<td>Graduation Requirement: Equally Rigorous Science</td>
</tr>
</tbody>
</table>

GENERAL NOTES

This course is designed as an interdisciplinary course to provide students with scientific principles, concepts, and methodologies required to identify and analyze environmental problems and to evaluate risks and alternative solutions for resolving and/or preventing them. Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p.3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have skills to aggregate, interpret, and present the resulting data (NRC, 2006, p.77; NSTA, 2007).

Special Notes:

1. Ensuring wide reading from complex text that varies in length.
2. Making close reading and rereading of texts central to lessons.
3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
4. Emphasizing students supporting answers based upon evidence from the text.
5. Providing extensive research and writing opportunities (claims and evidence).

Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)

- Asking questions (for science) and defining problems (for engineering).
- Developing and using models.
- Planning and carrying out investigations.
- Analyzing and interpreting data.
- Using mathematics, information and computer technology, and computational thinking.
- Constructing explanations (for science) and designing solutions (for engineering).
- Engaging in argument from evidence.
- Obtaining, evaluating, and communicating information.

Honors and Advanced Level Course Note: Academic rigor is more than simply assigning to students a greater quantity of work. Through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted, students are challenged to think and collaborate critically on the content they are learning.

English Language Development (ELD) Standards Special Notes Section:

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link:

For additional information on the development and implementation of the ELD standards, please contact the Bureau of Student Achievement through Language Acquisition at sala@fldoe.org.

Course Standards

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>

Analyze past, present, and potential future consequences to the environment resulting from various energy production technologies.

SC.912.E.6.6: Investigate and discuss how humans affect and are affected by geological systems and processes by describing the possible long-term consequences (costs and benefits) that increased human consumption (e.g., mining and extraction techniques off-shore drilling petroleum refining) has placed on the environment (e.g., pollution, health, habitat destruction) and the impact on future energy production.

Summarize the conditions that contribute to the climate of a geographic area, including the relationships to lakes and oceans.

SC.912.E.7.4: Describe how latitude, altitude, topography, prevailing winds, proximity to large bodies of water, vegetation and ocean currents determine the climate of a geographic area.

Identify, analyze, and relate the internal (Earth system) and external (astronomical) conditions that contribute to global climate change.

SC.912.E.7.7: Describe and discuss the conditions that bring about floods, droughts, wildfires, thunderstorms, hurricanes, rip currents, and tsunamis and how these conditions can influence human behavior (e.g., energy alternatives, conservation, migration, storm preparedness).

Cite evidence that the ocean has had a significant influence on climate change by absorbing, storing, and moving heat, carbon, and water.

SC.912.E.7.9: Explain how various atmospheric, oceanic, and hydrologic conditions in Florida have influenced and can influence human behavior, both individually and collectively.

Discuss the need for adequate monitoring of environmental parameters when making policy decisions.

Explain the significance of genetic factors, environmental factors, and pathogenic agents to health from the perspectives of both individual and public health.

Discuss the effects of technology on environmental quality.

Describe how biological diversity is increased by the origin of new species and how it is decreased by the natural process of extinction.

Describe how human population size and resource use relate to environmental quality.

Describe changes in ecosystems resulting from seasonal variations, climate change and succession.

Assess the need for adequate waste management strategies.

Diagram and explain the biogeochemical cycles of an ecosystem, including water, carbon, and nitrogen cycle.

Assess the effectiveness of innovative methods of protecting the environment.

Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution.

Evaluate the impact of biotechnology on the individual, society and the environment, including medical and ethical issues.

Discuss the need for adequate monitoring of environmental parameters when making policy decisions.

Assess the need for adequate waste management strategies.

Discuss the effects of technology on environmental quality.

Discuss the large-scale environmental impacts resulting from human activity, including waste spills, oil spills, runoff, greenhouse gases, ozone depletion, and surface and groundwater pollution.

Assess the need for adequate waste management strategies.

Diagram and explain the biogeochemical cycles of an ecosystem, including water, carbon, and nitrogen cycle.

Assess the effectiveness of innovative methods of protecting the environment.

Describe how human population size and resource use relate to environmental quality.
Describe how different natural resources are produced and how their rates of use and renewal limit availability.

Remarks/Examples:
- Annually assessed on Biology EOC. Also assesses SC.912.L.17.11, SC.912.L.17.13, SC.912.N.1.3

Discuss the special properties of water that contribute to Earth’s suitability as an environment for life: cohesive behavior, ability to moderate temperature, expansion upon freezing, and versatility as a solvent.

Remarks/Examples:
- Annually assessed on Biology EOC.

Define a problem based on a specific body of knowledge, for example: biology, chemistry, physics, and earth/space science, and do the following:
1. Pose questions about the natural world, (Articulate the purpose of the investigation and identify the relevant scientific concepts).
2. Conduct systematic observations, (Write procedures that are clear and replicable. Identify observables and examine relationships between test (independent) variable and outcome (dependent) variable. Employ appropriate methods for accurate and consistent observations; conduct and record measurements at appropriate levels of precision. Follow safety guidelines).
3. Examine books and other sources of information to see what is already known,
4. Review what is known in light of empirical evidence, (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
5. Plan investigations, (Design and evaluate a scientific investigation).
6. Use tools to gather, analyze, and interpret data (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs)., (Collect data or evidence in an organized way. Properly use instruments, equipment, and materials (e.g., scales, probeware, meter sticks, microscopes, computers) including set-up, calibration, technique, maintenance, and storage).
7. Pose answers, explanations, or descriptions of events,
8. Generate explanations that explicate or describe natural phenomena (inferences),
9. Use appropriate evidence and reasoning to justify these explanations to others,
10. Communicate results of scientific investigations, and
11. Evaluate the merits of the explanations produced by others.

Remarks/Examples:
- Florida Standards Connections for 6-12 Literacy in Science

For Students in Grades 9-10
- LAFS.9.10.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
- LAFS.9.10.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
- LAFS.9.10.RST.3.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
- LAFS.9.10.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- LAFS.9.10.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research.

For Students in Grades 11-12
- LAFS.11.12.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- LAFS.11.12.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks analyze the specific results based on explanations in the text.
- LAFS.11.12.RST.3.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
- LAFS.11.12.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- LAFS.11.12.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research.

Florida Standards Connections for Mathematical Practices
- MAFS.K12.MP.1: Make sense of problems and persevere in solving them.
- MAFS.K12.MP.2: Reason abstractly and quantitatively.
- MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others. [Viable arguments include evidence.]
- MAFS.K12.MP.4: Model with mathematics.
- MAFS.K12.MP.5: Use appropriate tools strategically.
- MAFS.K12.MP.7: Look for and make use of structure.
- MAFS.K12.MP.8: Look for and express regularity in repeated reasoning.

Remarks/Examples:
- Science is characterized by empirical observations, testable questions, formation of hypotheses, and experimentation that results in stable and replicable results, logical reasoning, and coherent theoretical constructs.

Florida Standards Connections: MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.
Recognize that the strength or usefulness of a scientific claim is evaluated through scientific argumentation, which depends on critical and logical thinking, and the active consideration of alternative scientific explanations to explain the data presented.

SC.912.N.1.3:

Remarks/Examples: Assess the reliability of data and identify reasons for inconsistent results, such as sources of error or uncontrolled conditions.

Florida Standards Connections: MAFS.K12.MP.2: Reason abstractly and quantitatively MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others

Identify sources of information and assess their reliability according to the strict standards of scientific investigation.

SC.912.N.1.4:

Remarks/Examples: Read, interpret, and examine the credibility and validity of scientific claims in different sources of information, such as scientific articles, advertisements, or media stories. Strict standards of science include controlled variables, sufficient sample size, replication of results, empirical and measurable evidence, and the concept of falsification.

Florida Standards Connections: LAFS.910.RST.1.1 / LAFS.1112.RST.1.1

Describe how scientific inferences are drawn from scientific observations and provide examples from the content being studied.

SC.912.N.1.6:

Remarks/Examples: Collect data/evidence and use tables/graphs to draw conclusions and make inferences based on patterns or trends in the data.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them.

Identify what is science, what clearly is not science, and what superficially resembles science (but fails to meet the criteria for science).

SC.912.N.2.1:

Remarks/Examples: Science is the systematic and organized inquiry that is derived from observations and experimentation that can be verified or tested by further investigation to explain natural phenomena (e.g. Science is testable, pseudo-science is not science seeks falsifications, pseudo-science seeks confirmations.)

Identify which questions can be answered through science and which questions are outside the boundaries of scientific investigation, such as questions addressed by other ways of knowing, such as art, philosophy, and religion.

SC.912.N.2.2:

Remarks/Examples: Identify scientific questions that can be disproved by experimentation/testing. Recognize that pseudoscience is a claim, belief, or practice which is presented as scientific, but does not adhere to strict standards of science (e.g. controlled variables, sample size, replicability, empirical and measurable evidence, and the concept of falsification).

Florida Standards Connections: MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

Explain that scientific knowledge is both durable and robust and open to change. Scientific knowledge can change because it is often examined and re-examined by new investigations and scientific argumentation. Because of these frequent examinations, scientific knowledge becomes stronger, leading to its durability.

SC.912.N.2.4:

Remarks/Examples: Recognize that ideas with the most durable explanatory power become established theories, but scientific explanations are continually subjected to change in the face of new evidence.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

Explain that a scientific theory is the culmination of many scientific investigations drawing together all the current evidence concerning a substantial range of phenomena; thus, a scientific theory represents the most powerful explanation scientists have to offer.

SC.912.N.3.1:

Remarks/Examples: Explain that a scientific theory is a well-tested hypothesis supported by a preponderance of empirical evidence.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them and, MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

Describe the function of models in science, and identify the wide range of models used in science.

SC.912.N.3.5:

Remarks/Examples: Describe how models are used by scientists to explain observations of nature.

Explain how scientific knowledge and reasoning provide an empirically-based perspective to inform society’s decision making.

SC.912.N.4.1:

Remarks/Examples: Recognize that no single universal step-by-step scientific method captures the complexity of doing science. A number of shared values and perspectives characterize a scientific approach.

MAFS.K12.MP.1: Make sense of problems and persevere in solving them, and MAFS.K12.MP.2: Reason abstractly and quantitatively.

Weigh the merits of alternative strategies for solving a specific societal problem by comparing a number of different costs and benefits, such as human, economic, and environmental.

SC.912.N.4.2:

Remarks/Examples: Identify examples of technologies, objects, and processes that have been modified to advance society, and explain why and how they were modified. Discuss ethics in scientific research to advance society (e.g. global climate change, historical development of medicine and medical practices).
Differentiate among the various forms of energy and recognize that they can be transformed from one form to others.

Remarks/Examples:
Differentiate between kinetic and potential energy. Recognize that energy cannot be created or destroyed, only transformed. Identify examples of transformation of energy: Heat to light in incandescent electric light bulbs, light to heat in laser drills, electrical to sound in radios. Sound to electrical in microphones, Electrical to chemical in battery rechargers. Chemical to electrical in dry cells. Mechanical to electrical in generators (power plants). Nuclear to heat in nuclear reactors. Gravitational potential energy of a falling object is converted to kinetic energy then to heat and sound energy when the object hits the ground.

Explore the Law of Conservation of Energy by differentiating among open, closed, and isolated systems and explain that the total energy in an isolated system is a conserved quantity.

Remarks/Examples:
Use calorimetry to illustrate conservation of energy. Differentiate between the different types of systems and solve problems involving conservation of energy in simple systems (Physics). Explain how conservation of energy is important in chemical reactions with bond formation and bond breaking (Chemistry).

Describe heat as the energy transferred by convection, conduction, and radiation, and explain the connection of heat to change in temperature or states of matter.

Remarks/Examples:
Explain the mechanisms (convection, conduction and radiation) of heat transfer. Explain how heat is transferred (energy in motion) from a region of higher temperature to a region of lower temperature until equilibrium is established. Solve problems involving heat flow and temperature changes by using known values of specific heat and/or phase change constants (latent heat). Explain the phase transitions and temperature changes demonstrated by a heating or cooling curve.

By the end of grade 12, read and comprehend science/technical texts in the grades 11–12 text complexity band independently and proficiently.

- Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.

- Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics.

- Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.

- Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.

- Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

- Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

- Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 11–12 topics, texts, and issues, building on others’ ideas and expressing their own clearly and persuasively.
 a. Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.
 b. Work with peers to promote civil, democratic discussions and decision-making, set clear goals and deadlines, and establish individual roles as needed.
 c. Propel conversations by posing and responding to questions that probe reasoning and evidence; ensure a hearing for a full range of positions on a topic or issue; clarify, verify, or challenge ideas and conclusions; and promote divergent and creative perspectives.
 d. Respond thoughtfully to diverse perspectives; synthesize comments, claims, and evidence made on all sides of an issue; resolve contradictions when possible; and determine what additional information or research is required to deepen the investigation or complete the task.

- Integrate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, orally) in order to make informed decisions and solve problems, evaluating the credibility and accuracy of each source and noting any discrepancies among the data.

- Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric, assessing the stance, premises, links among ideas, word choice, points of emphasis, and tone used.

- Present information, findings, and supporting evidence, conveying a clear and distinct perspective, such that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks.

- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

- Write arguments focused on discipline-specific content.
 a. Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequences the claim(s), counterclaims, reasons, and evidence.
 b. Develop claim(s) and counterclaims fairly and thoroughly, supplying the most relevant data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form that anticipates the audience's knowledge level, concerns, values, and possible biases.
 c. Use words, phrases, and clauses as well as varied syntax to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
 d. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
 e. Provide a concluding statement or section that follows from or supports the argument presented.

- Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

- Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information.
Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.

Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.

Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.

Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.

Assess the extent to which the reasoning and evidence in a text support the author's claim or a recommendation for solving a scientific or technical problem.

By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.

Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 9–10 topics, texts, and issues, building on others' ideas and expressing their own clearly and persuasively.

a. Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue.

b. Work with peers to set rules for collegial discussions and decision-making (e.g., informal consensus, taking votes on key issues, presentation of alternate views), clear goals and deadlines, and individual roles as needed.

c. Propose conversations by posing and responding to questions that relate the current discussion to broader themes or larger ideas; actively incorporate others into the discussion; and clarify, verify, or challenge ideas and conclusions.

d. Respond thoughtfully to diverse perspectives, summarize points of agreement and disagreement, and, when warranted, qualify or justify their own views and understanding and make new connections in light of the evidence and reasoning presented.

Integrate multiple sources of information presented in diverse media or formats (e.g., visually, quantitatively, orally) evaluating the credibility and accuracy of each source.

Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric identifying any fallacious reasoning or exaggerated or distorted evidence.

Present information, findings, and supporting evidence clearly, concisely, and logically such that listeners can follow the line of reasoning and the organization, development, substance, and style are appropriate to purpose, audience, and task.

Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Write arguments focused on discipline-specific content.

a. Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among the claim(s), counterclaims, reasons, and evidence.

b. Develop claim(s) and counterclaims fairly, supplying data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form and in a manner that anticipates the audience's knowledge level and concerns.

c. Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.

d. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.

e. Provide a concluding statement or section that follows from or supports the argument presented.

Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.

Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.

Analyze geographic information from a variety of sources including primary sources, atlases, computer, and digital sources, Geographic Information Systems (GIS), and a broad variety of maps.

Examples are thematic, contour, and dot-density.

Use geographic terms to locate and describe major ecosystems of Earth.

Use geographic terms and tools to explain how weather and climate influence the natural character of a place.

Use geographic terms and tools to explain differing perspectives on the use of renewable and non-renewable resources in Florida, the United States, and the world.

Use geographic terms and tools to explain how hydrology influences the physical character of a place.

Analyze case studies of how the Earth's physical systems affect humans.
SS.912.G.5.2:
Analyze case studies of how changes in the physical environment of a place can increase or diminish its capacity to support human activity.

SS.912.G.5.3:
Analyze case studies of the effects of human use of technology on the environment of places.

SS.912.G.5.4:
Analyze case studies of how humans impact the diversity and productivity of ecosystems.

MAFS.912.F-IF.2.4:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★

MAFS.912.S-ID.1.1:
Represent data with plots on the real number line (dot plots, histograms, and box plots). ★

MAFS.912.S-ID.1.2:
Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. ★

MAFS.912.S-ID.1.3:
Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). ★

MAFS.912.S-ID.2.5:
Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. ★

ELD.K12.ELL.SC.1:
English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science.

ELD.K12.ELL.SI.1:
English language learners communicate for social and instructional purposes within the school setting.

HE.912.C.1.3:
Evaluate how environment and personal health are interrelated.

Remarks/Examples:
- In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points.

Related Certifications
- Science (Secondary Grades 7-12)
- Biology (Grades 6-12)
- Chemistry (Grades 6-12)
- Earth/Space Science (Grades 6-12)

There are more than 1295 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: http://www.cpalms.org/Public/PreviewCourse/Preview/14523