GENERAL NOTES

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the middle school level, all students should have multiple opportunities every week to explore science laboratory investigations (labs). School laboratory investigations are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the middle school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (NRC 2006, p. 77; NSTA, 2007).

Special Notes:

Instructional Practices
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

1. Ensuring wide reading from complex text that varies in length.
2. Making close reading and rereading of texts central to lessons.
3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
4. Emphasizing students supporting answers based upon evidence from the text.
5. Providing extensive research and writing opportunities (claims and evidence).

- Asking questions (for science) and defining problems (for engineering).
- Developing and using models.
- Planning and carrying out investigations.
- Analyzing and interpreting data.
- Using mathematics, information and computer technology, and computational thinking.
- Constructing explanations (for science) and designing solutions (for engineering).
- Engaging in argument from evidence.
- Obtaining, evaluating, and communicating information.

English Language Development ELD Standards Special Notes Section:

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link:

For additional information on the development and implementation of the ELD standards, please contact the Bureau of Student Achievement through Language Acquisition at sala@fldoe.org.

Course Standards

Integrate Florida Standards for Mathematical Practice (MP) as applicable.

- MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.
• MAFS.K12.MP.2.1 Reason abstractly and quantitatively.
• MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.
• MAFS.K12.MP.4.1 Model with mathematics.
• MAFS.K12.MP.5.1 Use appropriate tools strategically.
• MAFS.K12.MP.6.1 Attend to precision.
• MAFS.K12.MP.7.1 Look for and make use of structure.
• MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.7.E.6.1</td>
<td>Describe the layers of the solid Earth, including the lithosphere, the hot convecting mantle, and the dense metallic liquid and solid cores.</td>
</tr>
<tr>
<td>SC.7.E.6.2</td>
<td>Identify the patterns within the rock cycle and relate them to surface events (weathering and erosion) and sub-surface events (plate tectonics and mountain building).</td>
</tr>
<tr>
<td>SC.7.E.6.3</td>
<td>Identify current methods for measuring the age of Earth and its parts, including the law of superposition and radioactive dating.</td>
</tr>
<tr>
<td>SC.7.E.6.4</td>
<td>Explain and give examples of how physical evidence supports scientific theories that Earth has evolved over geologic time due to natural processes.</td>
</tr>
<tr>
<td>SC.7.E.6.5</td>
<td>Explore the scientific theory of plate tectonics by describing how the movement of Earth's crustal plates causes both slow and rapid changes in Earth's surface, including volcanic eruptions, earthquakes, and mountain building.</td>
</tr>
<tr>
<td>SC.7.E.6.6</td>
<td>Identify the impact that humans have had on Earth, such as deforestation, urbanization, desertification, erosion, air and water quality, changing the flow of water.</td>
</tr>
<tr>
<td>SC.7.E.6.7</td>
<td>Recognize that heat flow and movement of material within Earth causes earthquakes and volcanic eruptions, and creates mountains and ocean basins.</td>
</tr>
<tr>
<td>SC.7.L.15.1</td>
<td>Recognize that fossil evidence is consistent with the scientific theory of evolution that living things evolved from earlier species.</td>
</tr>
<tr>
<td>SC.7.L.15.2</td>
<td>Explore the scientific theory of evolution by recognizing and explaining ways in which genetic variation and environmental factors contribute to evolution by natural selection and diversity of organisms.</td>
</tr>
<tr>
<td>SC.7.L.15.3</td>
<td>Explore the scientific theory of evolution by relating how the inability of a species to adapt within a changing environment may contribute to the extinction of that species.</td>
</tr>
<tr>
<td>SC.7.L.16.1</td>
<td>Understand and explain that every organism requires a set of instructions that specifies its traits, that this hereditary information (DNA) contains genes located in the chromosomes of each cell, and that heredity is the passage of these instructions from one generation to another.</td>
</tr>
<tr>
<td>Remarks/Examples:</td>
<td>Integrate HE.7.C.1.4. Describe how heredity can affect personal health.</td>
</tr>
<tr>
<td>SC.7.L.16.2</td>
<td>Determine the probabilities for genotype and phenotype combinations using Punnett Squares and pedigrees.</td>
</tr>
<tr>
<td>SC.7.L.16.3</td>
<td>Compare and contrast the general processes of sexual reproduction requiring meiosis and asexual reproduction requiring mitosis.</td>
</tr>
<tr>
<td>Remarks/Examples:</td>
<td>Integrate HE.7.C.1.4. Describe how heredity can affect personal health.</td>
</tr>
<tr>
<td>SC.7.L.17.1</td>
<td>Explain and illustrate the roles of and relationships among producers, consumers, and decomposers in the process of energy transfer in a food web.</td>
</tr>
<tr>
<td>SC.7.L.17.2</td>
<td>Compare and contrast the relationships among organisms such as mutualism, predation, parasitism, competition, and commensalism.</td>
</tr>
<tr>
<td>SC.7.L.17.3</td>
<td>Describe and investigate various limiting factors in the local ecosystem and their impact on native populations, including food, shelter, water, space, disease, parasitism, predation, and nesting sites.</td>
</tr>
<tr>
<td>SC.7.N.1.1</td>
<td>Define a problem from the seventh grade curriculum, use appropriate reference materials to support scientific understanding, plan and carry out scientific investigation of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.</td>
</tr>
<tr>
<td>Remarks/Examples:</td>
<td>Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.</td>
</tr>
<tr>
<td>SC.7.N.1.2</td>
<td>Distinguish between an experiment (which must involve the identification and control of variables) and other forms of scientific investigation and explain that not all scientific knowledge is derived from experimentation.</td>
</tr>
<tr>
<td>SC.7.N.1.3</td>
<td>Identify test variables (independent variables) and outcome variables (dependent variables) in an experiment.</td>
</tr>
<tr>
<td>SC.7.N.1.4</td>
<td>Describe the methods used in the pursuit of a scientific explanation as seen in different fields of science such as biology, geology, and physics.</td>
</tr>
<tr>
<td>SC.7.N.1.5</td>
<td>Explain that empirical evidence is the cumulative body of observations of a natural phenomenon on which scientific explanations are based.</td>
</tr>
<tr>
<td>SC.7.N.1.6</td>
<td>Explain that scientific knowledge is the result of a great deal of debate and confirmation within the science community.</td>
</tr>
<tr>
<td>SC.7.N.2.1</td>
<td>Identify an instance from the history of science in which scientific knowledge has changed when new evidence or new interpretations are encountered.</td>
</tr>
<tr>
<td>SC.7.N.3.1</td>
<td>Recognize and explain the difference between theories and laws and give several examples of scientific theories and the evidence that supports them.</td>
</tr>
<tr>
<td>Remarks/Examples:</td>
<td>Identify the benefits and limitations of the use of scientific models.</td>
</tr>
<tr>
<td>SC.7.P.10.1</td>
<td>Illustrate that the sun's energy arrives as radiation with a wide range of wavelengths, including infrared, visible, and ultraviolet, and that white light is made up of a spectrum of many different colors.</td>
</tr>
<tr>
<td>SC.7.P.10.2</td>
<td>Observe and explain that light can be reflected, refracted, and/or absorbed.</td>
</tr>
<tr>
<td>SC.7.P.10.3</td>
<td>Recognize that light waves, sound waves, and other waves move at different speeds in different materials.</td>
</tr>
<tr>
<td>SC.7.P.11.1</td>
<td>Recognize that adding heat to or removing heat from a system may result in a temperature change and possibly a change of state.</td>
</tr>
<tr>
<td>SC.7.P.11.2</td>
<td>Investigate and describe the transformation of energy from one form to another.</td>
</tr>
<tr>
<td>SC.7.P.11.3</td>
<td>Cite evidence to explain that energy cannot be created nor destroyed, only changed from one form to another.</td>
</tr>
<tr>
<td>SC.7.P.11.4</td>
<td>Observe and describe that heat flows in predictable ways, moving from warmer objects to cooler ones until they reach the same temperature.</td>
</tr>
<tr>
<td>SC.8.E.5.1</td>
<td>Recognize that there are enormous distances between objects in space and apply our knowledge of light and space travel to understand this distance.</td>
</tr>
</tbody>
</table>
Recognize that the universe contains many billions of galaxies and that each galaxy contains many billions of stars.

Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition.

Explore the Law of Universal Gravitation by explaining the role that gravity plays in the formation of planets, stars, and solar systems and in determining their motions.

Describe and classify specific physical properties of stars: apparent magnitude (brightness), temperature (color), size, and luminosity (absolute brightness).

Create models of solar properties including: rotation, structure of the Sun, convection, sunspots, solar flares, and prominences.

Compare and contrast the properties of objects in the Solar System including the Sun, planets, and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement, temperature, and atmospheric conditions.

Compare various historical models of the Solar System, including geocentric and heliocentric.

Explain the impact of objects in space on each other including:
1. the Sun on the Earth including seasons and gravitational attraction
2. the Moon on the Earth, including phases, tides, and eclipses, and the relative position of each body.

Assess how technology is essential to science for such purposes as access to outer space and other remote locations, sample collection, measurement, data collection and storage, computation, and communication of information.

Identify and compare characteristics of the electromagnetic spectrum such as wavelength, frequency, use, and hazards and recognize its application to an understanding of planetary images and satellite photographs.

Summarize the effects of space exploration on the economy and culture of Florida.

Distinguish between physical changes and chemical changes.

Describe and classify landforms (e.g., dunes, lakes, sinkholes, aquifers) and describe how they form (erosion, physical/chemical weathering, and deposition). Explain how sea level changes over time have exposed and inundated continental shelves, created and destroyed inland seas, and shaped the surface of the Earth.

Identify various landforms (e.g. dunes, lakes, sinkholes, aquifers) and describe how they form (erosion, physical/chemical weathering, and deposition). Explain how sea level changes over time have exposed and inundated continental shelves, created and destroyed inland seas, and shaped the surface of the Earth.

Describe and differentiate the layers of Earth and the interactions among them.

Connect surface features to surface processes that are responsible for their formation.

Analyze the scientific theory of plate tectonics and identify related major processes and features as a result of moving plates.

Discuss the development of plate tectonic theory, which is derived from the combination of two theories: continental drift and seafloor spreading. Compare and contrast the three primary types of plate boundaries (convergent, divergent, and transform). Explain the origin of geologic features and processes that result from plate tectonics (e.g., earthquakes, volcanoes, trenches, mid-ocean ridges, island arcs and chains, hot spots,
SC.912.L.15.6:
Discuss distinguishing characteristics of the domains and kingdoms of living organisms.

Remarks/Examples:

SC.912.L.18.7:
Identify the reactants, products, and basic functions of photosynthesis.

Remarks/Examples:
- Annually assessed on Biology EOC. Also assesses SC.912.L.18.1.

SC.912.L.18.9:
Explain the interrelated nature of photosynthesis and cellular respiration.

Remarks/Examples:
- Annually assessed on Biology EOC. Also assesses SC.912.L.18.7, SC.912.L.18.8, SC.912.L.18.10.

SC.912.P.8.4:
Explore the scientific theory of atoms (also known as atomic theory) by describing the structure of atoms in terms of protons, neutrons, and electrons, and differentiate among these particles in terms of their mass, electrical charges and locations within the atom.

Remarks/Examples:
- Explain that electrons, protons, and neutrons are parts of the atom and that the nuclei of atoms are composed of protons and neutrons, which experience forces of attraction and repulsion consistent with their charges and masses.

SC.912.P.8.5:
Relate properties of atoms and their position in the periodic table to the arrangement of their electrons.

Remarks/Examples:
- Use the periodic table and electron configuration to determine an element's number of valence electrons and its chemical and physical properties.
- Explain how chemical properties depend almost entirely on the configuration of the outer electron shell.

SC.912.P.8.11:
Differentiate among the various forms of energy and recognize that they can be transformed from one form to others.

Remarks/Examples:
- Differentiate between kinetic potential energy. Recognize that energy cannot be created or destroyed, only transformed. Identify examples of transformation of energy: Heat to light in incandescent electric light bulbs, Light to heat in laser drills, Electrical to sound in radios, Sound to electrical in microphones, Electrical to chemical in battery rechargers, Chemical to electrical in dry cells, Mechanical to electrical in generators (power plants), Nuclear to heat in nuclear reactors, Gravitational potential energy of a falling object is converted to kinetic energy then to heat, and sound energy when the object hits the ground.

SC.912.P.10.5:
Relate temperature to the average molecular kinetic energy.

Remarks/Examples:
- Recognize that the internal energy of an object includes the energy of random motion of the object's atoms and molecules, often referred to as thermal energy.

LAFS.68.RST.1.1:
Cite specific textual evidence to support analysis of science and technical texts.

LAFS.68.RST.1.2:
Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

LAFS.68.RST.1.3:
Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

LAFS.68.RST.2.4:
Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 text topics and ideas.

LAFS.68.RST.2.5:
Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

LAFS.68.RST.2.6:
Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text.

LAFS.68.RST.3.7:
Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).

LAFS.68.RST.3.8:
Distinguish among facts, reasoned judgment based on research findings, and speculation in a text.

LAFS.68.RST.3.9:
Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

LAFS.68.RST.4.10:
By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.

- Write arguments focused on discipline-specific content.
 - a. Introduce claim(s) about a topic or issue, acknowledge and distinguish the claim(s) from alternate or opposing claims, and organize the reasons and evidence logically.
Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. For example, collect data from students in your English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science. Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of disciplines specific tasks, purposes, and audiences. Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Draw evidence from informational texts to support analysis, reflection, and research. Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen credible sources. Support claim(s) with logical reasoning and relevant, accurate data and evidence that demonstrate an understanding of the topic or text, using related, focused questions that allow for multiple avenues of exploration. Use appropriate and varied transitions to create cohesion and clarify the relationships among claim(s), counterclaims, reasons, and evidence. Support claim(s) with logical reasoning and relevant, accurate data and evidence that demonstrate an understanding of the topic or text, using related, focused questions that allow for multiple avenues of exploration. Delineate a speaker's argument and specific claims, evaluating the soundness of the reasoning and relevance and sufficiency of the evidence and identifying when irrelevant evidence is introduced. Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems. **Remarks/Examples:**

Fluency Expectations or Examples of Culminating Standards

When students learn to solve problems involving volumes of cones, cylinders, and spheres — together with their previous grade 7 work in angle measure, area, surface area and volume (7.G.2.4-2.6) — they will have acquired a well-developed set of geometric measurement skills. These skills, along with proportional reasoning (7.RP) and multistep numerical problem solving (7.EE.2.3), can be combined and used in flexible ways as part of modeling during high school — not to mention after high school for college and careers.

Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?

Describe ways to reduce or prevent injuries and adolescent health problems.

Remarks/Examples:

- Helmet use, seat-belt use, pedestrian safety, unsupervised handling of firearms, and proper use of over-the-counter medications.

Related Certifications

- Biology (Grades 6-12)
- Earth/Space Science (Grades 6-12)
- Middle Grades General Science (Middle Grades 5-9)
- Chemistry (Grades 6-12)
- Physics (Grades 6-12)
There are more than 1493 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: http://www.cpalms.org/Public/PreviewCourse/Preview/13138