Marine Science 1 Honors (#2002510)

This document was generated on CPALMS - www.cpalms.org

<table>
<thead>
<tr>
<th>Course Number: 2002510</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Credits: One (1) credit</td>
</tr>
<tr>
<td>Course Type: Core Academic Course</td>
</tr>
<tr>
<td>Course Status: Course Approved</td>
</tr>
<tr>
<td>Graduation Requirement: Equally Rigorous Science</td>
</tr>
</tbody>
</table>

GENERAL NOTES

While the content focus of this course is consistent with the Marine Science I course, students will explore these concepts in greater depth. In general, the academic pace and rigor will be greatly increased for honors level course work. Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes: Instructional Practices

Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

1. Ensuring wide reading from complex text that varies in length.
2. Making close reading and rereading of texts central to lessons.
3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
4. Emphasizing students supporting answers based upon evidence from the text.
5. Providing extensive research and writing opportunities (claims and evidence).

- Asking questions (for science) and defining problems (for engineering).
- Developing and using models.
- Planning and carrying out investigations.
- Analyzing and interpreting data.
- Using mathematics, information and computer technology, and computational thinking.
- Constructing explanations (for science) and designing solutions (for engineering).
- Engaging in argument from evidence.
- Obtaining, evaluating, and communicating information.

Honors and Advanced Level Course Note: Academic rigor is more than simply assigning to students a greater quantity of work. Through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted, students are challenged to think and collaborate critically on the content they are learning.

English Language Development ELD Standards Special Notes Section:

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link:

For additional information on the development and implementation of the ELD standards, please contact the Bureau of Student Achievement through Language Acquisition at sala@fldoe.org.

Additional Instructional Resources:
A.V.E. for Success Collection is provided by the Florida Association of School Administrators: http://www.fasa.net/4DCGI/cms/review.html?
Action=CMS_Document&DocID=139. Please be aware that these resources have not been reviewed by CPALMS and there may be a charge for the use of some of them in
Diagram and explain the biogeochemical cycles of an ecosystem, including water, carbon, and nitrogen cycle.

Explain the general distribution of life in aquatic systems as a function of chemistry, geography, light, depth, salinity, and temperature.

Evaluate the costs and benefits of renewable and nonrenewable resources, such as water, energy, fossil fuels, wildlife, and forests.

Describe how human population size and resource use relate to environmental quality.

Compare and contrast the relationships among organisms, including predation, parasitism, competition, commensalism, and mutualism.

Explain the significance of genetic factors, environmental factors, and pathogenic agents to health from the perspectives of both individual and public health.

Recognize the consequences of the losses of biodiversity due to catastrophic events, climate changes, human activity, and the introduction of invasive, non-native species.

Describe changes in ecosystems resulting from seasonal variations, climate change and succession.

Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.

Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution.

Use a food web to identify and distinguish producers, consumers, and decomposers. Explain the pathway of energy transfer through trophic levels and the reduction of available energy at successive trophic levels.

Discuss the large-scale environmental impacts resulting from human activity, including waste spills, oil spills, runoff, greenhouse gases, ozone depletion, and surface and groundwater pollution.

Discuss the special properties of water that contribute to Earth’s suitability as an environment for life: cohesive behavior, ability to moderate temperature, expansion upon freezing, and versatility as a solvent.

Discuss the formation of severe weather to the various physical factors.

Cite evidence that the ocean has had a significant influence on climate change by absorbing, storing, and moving heat, carbon, and water.

Explain how the oceans act as sources/sinks of heat energy, store carbon dioxide mostly as dissolved HCO3- and CaCO3 as precipitate or biogenic carbonate deposits, which have an impact on climate change.

Explain the conditions required for natural selection, including: overproduction of offspring, inherited variation, and the struggle to survive, which result in differential reproductive success.

Discuss the significance of genetic factors, environmental factors, and pathogenic agents to health from the perspectives of both individual and public health.

Evaluate the impact of biotechnology on the individual, society and the environment, including medical and ethical issues.

Discuss the features of the ocean as a source of biodiversity, including the formation of severe weather, human activity, and the introduction of invasive, non-native species.

Discuss the large-scale environmental impacts resulting from human activity, including waste spills, oil spills, runoff, greenhouse gases, ozone depletion, and surface and groundwater pollution.

Discuss the formation of severe weather to the various physical factors.

Cite evidence that the ocean has had a significant influence on climate change by absorbing, storing, and moving heat, carbon, and water.

Explain how the oceans act as sources/sinks of heat energy, store carbon dioxide mostly as dissolved HCO3- and CaCO3 as precipitate or biogenic carbonate deposits, which have an impact on climate change.

Explain the conditions required for natural selection, including: overproduction of offspring, inherited variation, and the struggle to survive, which result in differential reproductive success.

Discuss the significance of genetic factors, environmental factors, and pathogenic agents to health from the perspectives of both individual and public health.

Evaluate the impact of biotechnology on the individual, society and the environment, including medical and ethical issues.

Discuss the formation of severe weather to the various physical factors.

Cite evidence that the ocean has had a significant influence on climate change by absorbing, storing, and moving heat, carbon, and water.

Explain how the oceans act as sources/sinks of heat energy, store carbon dioxide mostly as dissolved HCO3- and CaCO3 as precipitate or biogenic carbonate deposits, which have an impact on climate change.

Explain the conditions required for natural selection, including: overproduction of offspring, inherited variation, and the struggle to survive, which result in differential reproductive success.

Discuss the significance of genetic factors, environmental factors, and pathogenic agents to health from the perspectives of both individual and public health.

Evaluate the impact of biotechnology on the individual, society and the environment, including medical and ethical issues.

Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution.

Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.

Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution.

Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.

Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution.

Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.

Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution.

Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.

Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution.

Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.

Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution.

Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.

Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution.

Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.
4. Review what is known in light of empirical evidence, (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).

5. Plan investigations, (Design and evaluate a scientific investigation).

6. Use tools to gather, analyze, and interpret data (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs), (Collect data or evidence in an organized way. Properly use instruments, equipment, and materials (e.g., scales, probeware, meter sticks, microscopes, computers) including set-up, calibration, technique, maintenance, and storage).

7. Pose answers, explanations, or descriptions of events,

8. Generate explanations that explicate or describe natural phenomena (inferences),

9. Use appropriate evidence and reasoning to justify these explanations to others,

10. Communicate results of scientific investigations, and

11. Evaluate the merits of the explanations produced by others.

Remarks/Examples:

Florida Standards Connections for 6-12 Literacy in Science
For Students in Grades 9-10
LAFS.910.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
LAFS.910.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
LAFS.910.RST.3.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
LAFS.910.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures or technical processes.
LAFS.910.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research.

For Students in Grades 11-12
LAFS.1112.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
LAFS.1112.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks analyze the specific results based on explanations in the text.
LAFS.1112.RST.3.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
LAFS.1112.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures or technical processes.
LAFS.1112.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research.

Florida Standards Connections for Mathematical Practices
MAFS.K12.MP.1: Make sense of problems and persevere in solving them.
MAFS.K12.MP.2: Reason abstractly and quantitatively.
MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others. [Viable arguments include evidence.]
MAFS.K12.MP.4: Model with mathematics.
MAFS.K12.MP.5: Use appropriate tools strategically.
MAFS.K12.MP.6: Attend to precision.
MAFS.K12.MP.7: Look for and make use of structure.
MAFS.K12.MP.8: Look for and express regularity in repeated reasoning.

Remarks/Examples:

Florida Standards Connections: MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

SC.912.N.1.1:

SC.912.N.1.2:

SC.912.N.1.3:

SC.912.N.1.4:

Remarks/Examples:

Science is characterized by empirical observations, testable questions, formation of hypotheses, and experimentations that result in stable and replicable results, logical reasoning, and coherent theoretical constructs.

Florida Standards Connections: MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

Remarks/Examples:

Recognize that the strength or usefulness of a scientific claim is evaluated through scientific argumentation, which depends on critical and logical thinking, and the active consideration of alternative scientific explanations to explain the data presented.

Florida Standards Connections: MAFS.K12.MP.2: Reason abstractly and quantitatively MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others

Remarks/Examples:

Identify sources of information and assess their reliability according to the strict standards of scientific investigation.

Florida Standards Connections: LAFS.910.RST.1.1 / LAFS.1112.RST.1.1

Remarks/Examples:

Describe and provide examples of how similar investigations conducted in many parts of the world result in the same outcome.
SC.912.N.1.5: Remarks/Examples: Recognize that contributions to science can be made and have been made by people from all over the world.

Describe how scientific inferences are drawn from scientific observations and provide examples from the content being studied.

SC.912.N.1.6: Remarks/Examples: Collect data/evidence and use tables/graphs to draw conclusions and make inferences based on patterns or trends in the data.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them.

SC.912.N.1.7: Remarks/Examples: Recognize the role of creativity in constructing scientific questions, methods and explanations.

SC.912.N.2.1: Remarks/Examples: Science is the systematic and organized inquiry that is derived from observations and experimentation that can be verified or tested by further investigation to explain natural phenomena (e.g. Science is testable, pseudo-science is not science seeks falsifications, pseudo-science seeks confirmations.)

Identify what is science, what clearly is not science, and what superficially resembles science (but fails to meet the criteria for science).

SC.912.N.2.4: Remarks/Examples: Recognize that ideas with the most durable explanatory power become established theories, but scientific explanations are continually subjected to change in the face of new evidence.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

SC.912.N.2.5: Remarks/Examples: Recognize that scientific questions, observations, and conclusions may be influenced by the existing state of scientific knowledge, the social and cultural context of the researcher, and the observer's experiences and expectations. Identify possible bias in qualitative and quantitative data analysis.

Describe instances in which scientists' varied backgrounds, talents, interests, and goals influence the inferences and thus the explanations that they make about observations of natural phenomena and describe that competing interpretations (explanations) of scientists are a strength of science as they are a source of a new, testable ideas that have the potential to add new evidence to support one or another of the explanations.

SC.912.N.3.1: Remarks/Examples: Explain that a scientific theory is the culmination of many scientific investigations drawing together all the current evidence concerning a substantial range of phenomena; thus, a scientific theory represents the most powerful explanation scientists have to offer.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them and MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

SC.912.N.3.5: Remarks/Examples: Describe how models are used by scientists to explain observations of nature.

SC.912.N.4.1: Remarks/Examples: Recognize that no single universal step-by-step scientific method captures the complexity of doing science. A number of shared values and perspectives characterize a scientific approach.

MAFS.K12.MP.1: Make sense of problems and persevere in solving them and MAFS.K12.MP.2: Reason abstractly and quantitatively.

SC.912.N.4.2: Remarks/Examples: Identify examples of technologies, objects, and processes that have been modified to advance society, and explain why and how they were modified. Discuss ethics in scientific research to advance society (e.g. global climate change, historical development of medicine and medical practices).

SC.912.P.10.2: Remarks/Examples: Use calorimetry to illustrate conservation of energy. Differentiate between the different types of systems and solve problems involving conservation of energy in simple systems (Physics). Explain how conservation of energy is important in chemical reactions with bond formation and bond breaking (Chemistry).
Describe the measurable properties of waves and explain the relationships among them and how these properties change when the wave moves from one medium to another.

SC.912.P.10.20:

Remarks/Examples:
Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period, reflection and refraction) and explain the relationships among them. Recognize that the source of all waves is a vibration and waves carry energy from one place to another. Distinguish between transverse and longitudinal waves in mechanical media, such as springs and ropes, and on the earth (seismic waves). Describe sound as a longitudinal wave whose speed depends on the properties of the medium in which it propagates.

LAFS.1112.RST.1.1:

Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

LAFS.1112.RST.1.2:

Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.

LAFS.1112.RST.1.3:

Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics.

LAFS.1112.RST.2.4:

Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.

LAFS.1112.RST.2.5:

Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 11–12 topics, texts, and issues, building on others' ideas and expressing their own clearly and persuasively.

- a. Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research or issue to stimulate a thoughtful, well-reasoned exchange of ideas.
- b. Work with peers to promote civil, democratic discussions and decision-making, set clear goals and deadlines, and establish individual roles as needed.
- c. Propose conversations by posing and responding to questions that probe reasoning and evidence; ensure a hearing for a full range of positions on a topic or issue; clarify, verify, or challenge ideas and conclusions; and promote divergent and creative perspectives.
- d. Respond thoughtfully to diverse perspectives; synthesize comments, claims, and evidence made on all sides of an issue; resolve contradictions when possible; and determine what additional information or research is required to deepen the investigation or complete the task.

LAFS.1112.SL.1.1:

Integrate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, orally) in order to make informed decisions and solve problems, evaluating the credibility and accuracy of each source and noting any discrepancies among the data.

LAFS.1112.SL.1.2:

Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric, assessing the stance, premises, links among ideas, word choice, points of emphasis, and tone used.

LAFS.1112.SL.1.3:

Present information, findings, and supporting evidence, conveying a clear and distinct perspective, such that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks.

LAFS.1112.SL.1.4:

Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

LAFS.1112.WHST.1.1:

Write arguments focused on discipline-specific content.

- a. Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequences the claim(s), counterclaims, reasons, and evidence.
- b. Develop claim(s) and counterclaims fairly and thoroughly, supplying the most relevant data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form that anticipates the audience's knowledge level, concerns, values, and possible biases.
- c. Use words, phrases, and clauses as well as varied syntax to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
- d. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
- e. Provide a concluding statement or section that follows from or supports the argument presented.

LAFS.1112.WHST.1.2:

Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

- a. Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
- b. Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.
- c. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.
- d. Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers.
- e. Provide a concluding statement or section that follows from and supports the information or explanation provided (e.g., articulating implications or the significance of the topic).

LAFS.1112.WHST.2.4:

Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

LAFS.1112.WHST.2.5:

Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information.

LAFS.1112.WHST.2.6:

Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

LAFS.1112.WHST.2.8:

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

LAFS.1112.WHST.3.9:

Draw evidence from informational texts to support analysis, reflection, and research.

LAFS.1112.WHST.4.10:

Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★

- a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
- b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
- c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
- d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
- e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude, and using phase shift.

Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. ★

Evaluate reports based on data. ★

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. ★

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. Recognize possible associations and trends in the data. ★

In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points. ★

In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points. ★

In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points. ★

Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. ★

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. ★

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. ★

- a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, and exponential models.
- b. Informally assess the fit of a function by plotting and analyzing residuals.
- c. Fit a linear function for a scatter plot that suggests a linear association.

Students take a more sophisticated look at using a linear function to model the relationship between two numerical variables. In addition to fitting a line to data, students assess how well the model fits by analyzing residuals. ★

Related Certifications

<table>
<thead>
<tr>
<th>Biology (Grades 6-12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry (Grades 6-12)</td>
</tr>
<tr>
<td>Physics (Grades 6-12)</td>
</tr>
<tr>
<td>Earth/Space Science (Grades 6-12)</td>
</tr>
<tr>
<td>Science (Secondary Grades 7-12)</td>
</tr>
</tbody>
</table>

There are more than 1186 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: http://www.cpalms.org/Public/PreviewCourse/Preview/13109