GENERAL NOTES

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes:

Instructional Practices

Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

1. Ensuring wide reading from complex text that varies in length.
2. Making close reading and rereading of texts central to lessons.
3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
4. Emphasizing students supporting answers based upon evidence from the text.
5. Providing extensive research and writing opportunities (claims and evidence).

- Asking questions (for science) and defining problems (for engineering).
- Developing and using models.
- Planning and carrying out investigations.
- Analyzing and interpreting data.
- Using mathematics, information and computer technology, and computational thinking.
- Constructing explanations (for science) and designing solutions (for engineering).
- Engaging in argument from evidence.
- Obtaining, evaluating, and communicating information.

English Language Development ELD Standards Special Notes Section:

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link:

For additional information on the development and implementation of the ELD standards, please contact the Bureau of Student Achievement through Language Acquisition at sala@fldoe.org.

Additional Instructional Resources:

A.V.E. for Success Collection is provided by the Florida Association of School Administrators: http://www.fasa.net/4DCGI/cms/review.html?Action=CMS_Document&DocID=139. Please be aware that these resources have not been reviewed by CPALMS and there may be a charge for the use of some of them in this collection.

Course Standards

Integrate Standards for Mathematical Practice (MP) as applicable.

- MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.
- MAFS.K12.MP.2.1 Reason abstractly and quantitatively.
Compare and contrast the relationships among organisms, including predation, parasitism, competition, commensalism, and mutualism.

Understand the various oceanic and freshwater processes, such as currents, tides, and waves, and their impact on the abundance of aquatic organisms.

Explain the general distribution of life in aquatic systems as a function of chemistry, geography, light, depth, salinity, and temperature.

Diagram and explain the biogeochemical cycles of an ecosystem, including water, carbon, and nitrogen cycle.

Recognize the consequences of the losses of biodiversity due to catastrophic events, climate changes, and human activity.

Characterize the biotic and abiotic components that define freshwater systems, marine systems, and terrestrial systems.

Describe changes in ecosystems resulting from seasonal variations, climate change, and succession.

- MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.
- MAFS.K12.MP.4.1 Model with mathematics.
- MAFS.K12.MP.5.1 Use appropriate tools strategically.
- MAFS.K12.MP.6.1 Attend to precision.
- MAFS.K12.MP.7.1 Look for and make use of structure.
- MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.912.E.7.9</td>
<td>Cite evidence that the ocean has had a significant influence on climate change by absorbing, storing, and moving heat, carbon, and water. Remarks/Examples: Explain how the oceans act as sources/sinks of heat energy, store carbon dioxide mostly as dissolved HCO3- and CaCO3 as precipitate or biogenic carbonate deposits, which have an impact on climate change.</td>
</tr>
<tr>
<td>SC.912.L.14.6</td>
<td>Explain the significance of genetic factors, environmental factors, and pathogenic agents to health from the perspectives of both individual and public health.</td>
</tr>
<tr>
<td>SC.912.L.15.13</td>
<td>Discuss the characteristics of populations, such as number of individuals, age structure, density, and pattern of distribution. Remarks/Examples: Florida Standards Connections: MAFS.K12.MP.7: Look for and make use of structure. Annually assessed on Biology EOC. Also assesses SC.912.L.15.14, SC.912.L.15.15, and SC.912.N.1.3.</td>
</tr>
<tr>
<td>SC.912.L.15.17.1</td>
<td>Discuss the general distribution of life in aquatic systems as a function of chemistry, geography, light, depth, salinity, and temperature.</td>
</tr>
<tr>
<td>SC.912.L.15.17.2</td>
<td>Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.</td>
</tr>
<tr>
<td>SC.912.L.15.17.4</td>
<td>Describe changes in ecosystems resulting from seasonal variations, climate change and succession.</td>
</tr>
<tr>
<td>SC.912.L.15.17.6</td>
<td>Compare and contrast the relationships among organisms, including predation, parasitism, competition, commensalism, and mutualism.</td>
</tr>
<tr>
<td>SC.912.L.15.17.7</td>
<td>Characterize the biotic and abiotic components that define freshwater systems, marine systems, and terrestrial systems.</td>
</tr>
<tr>
<td>SC.912.L.15.17.8</td>
<td>Recognize the consequences of the losses of biodiversity due to catastrophic events, climate changes, human activity, and the introduction of invasive, non-native species.</td>
</tr>
<tr>
<td>SC.912.L.15.17.9</td>
<td>Use a food web to identify and distinguish producers, consumers, and decomposers. Explain the pathway of energy transfer through trophic levels and the reduction of available energy at successive trophic levels. Remarks/Examples: Annually assessed on Biology EOC. Also assesses SC.912.E.7.1.</td>
</tr>
<tr>
<td>SC.912.L.15.17.10</td>
<td>Diagram and explain the biogeochemical cycles of an ecosystem, including water, carbon, and nitrogen cycle.</td>
</tr>
<tr>
<td>SC.912.L.15.11.11</td>
<td>Evaluate the costs and benefits of renewable and nonrenewable resources, such as water, energy, fossil fuels, wildlife, and forests.</td>
</tr>
<tr>
<td>SC.912.L.15.16.16</td>
<td>Discuss the large-scale environmental impacts resulting from human activity, including waste spills, oil spills, runoff, greenhouse gases, ozone depletion, and surface and groundwater pollution.</td>
</tr>
<tr>
<td>SC.912.L.15.17.16</td>
<td>Integrate HE.912.C.1.3: Evaluate how environment and personal health are interrelated and, HE.912.C.1.5: Analyze strategies for prevention, detection, and treatment of communicable and chronic diseases.</td>
</tr>
<tr>
<td>SC.912.L.18.12</td>
<td>Discuss the special properties of water that contribute to Earth’s suitability as an environment for life: cohesive behavior, ability to moderate temperature, expansion upon freezing, and versatility as a solvent. Remarks/Examples: Annually assessed on Biology EOC.</td>
</tr>
</tbody>
</table>

Define a problem based on a specific body of knowledge, for example: biology, chemistry, physics, and earth/space science, and do the following:

1. Pose questions about the natural world, (Articulate the purpose of the investigation and identify the relevant scientific concepts).
2. Conduct systematic observations, iWrite procedures that are clear and replicable. Identify observables and examine relationships between test (independent) variable and outcome (dependent) variable. Employ appropriate methods for accurate and consistent observations; conduct and record measurements at appropriate levels of precision. Follow safety guidelines).
3. Examine books and other sources of information to see what is already known, Review what is known in light of empirical evidence, (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
4. Plan investigations, (Design and evaluate a scientific investigation).
5. Use tools to gather, analyze, and interpret data (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs). (Collect data or evidence in an organized way. Properly use instruments, equipment, and materials (e.g., scales, probeware, meter sticks, microscopes, computers) including set-up, calibration, technique, maintenance, and storage).
6. Pose answers, explanations, or descriptions of events, Generate explanations that explicate or describe natural phenomena (inferences), Use appropriate evidence and reasoning to justify these explanations to others, Communicate results of scientific investigations, and Evaluate the merits of the explanations produced by others. Remarks/Examples: Florida Standards Connections for 6-12 Literacy in Science For Students in Grades 9-10 LAFS.910.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of...
SC.912.N.1.1: Identify what is science, what clearly is not science, and what superficially resembles science (but fails to meet the criteria for science).

Remarks/Examples:
Science is the systematic and organized inquiry that is derived from observations and experimentation that can be verified or tested by further experiments, taking measurements, or performing technical tasks analyzing the specific results based on explanations in the text.

SC.912.N.1.2: Recognize the role of creativity in constructing scientific questions, methods, and explanations.

Remarks/Examples:
Science is characterized by empirical observations, testable questions, formation of hypotheses, and experimentation that results in stable and replicable results, logical reasoning, and coherent theoretical constructs.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them.
MAFS.K12.MP.2: Reason abstractly and quantitatively.
MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others. [Viable arguments include evidence.]
MAFS.K12.MP.4: Model with mathematics.
MAFS.K12.MP.5: Use appropriate tools strategically.
MAFS.K12.MP.6: Attend to precision.
MAFS.K12.MP.7: Look for and make use of structure.
MAFS.K12.MP.8: Look for and express regularity in repeated reasoning.

SC.912.N.1.3: Describe and explain what characterizes science and its methods.

Remarks/Examples:
Science is characterized by empirical observations, testable questions, formation of hypotheses, and experimentation that results in stable and replicable results, logical reasoning, and coherent theoretical constructs.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them.
MAFS.K12.MP.2: Reason abstractly and quantitatively.
MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others. [Viable arguments include evidence.]
MAFS.K12.MP.4: Model with mathematics.
MAFS.K12.MP.5: Use appropriate tools strategically.
MAFS.K12.MP.6: Attend to precision.
MAFS.K12.MP.7: Look for and make use of structure.
MAFS.K12.MP.8: Look for and express regularity in repeated reasoning.

SC.912.N.1.4: Identify sources of information and assess their reliability according to the strict standards of scientific investigation.

Remarks/Examples:
Read, interpret, and examine the credibility and validity of scientific claims in different sources of information, such as scientific articles, advertisements, or media stories. Strict standards of science include controlled variables, sufficient sample size, replication of results, empirical and measurable evidence, and the concept of falsification.

Florida Standards Connections: LAFS.910.RST.1.1 / LAFS.1112.RST.1.1.

SC.912.N.1.5: Describe and provide examples of how similar investigations conducted in many parts of the world result in the same outcome.

Remarks/Examples:
Recognize that contributions to science can be made and have been made by people from all over the world.

SC.912.N.1.6: Describe how scientific inferences are drawn from scientific observations and provide examples from the content being studied.

Remarks/Examples:
Collect data/evidence and use tables/graphs to draw conclusions and make inferences based on patterns or trends in the data.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them.

SC.912.N.1.7: Recognize the role of creativity in constructing scientific questions, methods, and explanations.

Remarks/Examples:
Work through difficult problems using creativity, and critical and analytical thinking in problem solving (e.g., convergent versus divergent thinking and creativity in problem solving).

SC.912.N.2.1: Science is the systematic and organized inquiry that is derived from observations and experimentation that can be verified or tested by further experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.

SC.912.N.3.1: Identify what is science, what clearly is not science, and what superficially resembles science (but fails to meet the criteria for science).

Remarks/Examples:
Science is characterized by empirical observations, testable questions, formation of hypotheses, and experimentation that results in stable and replicable results, logical reasoning, and coherent theoretical constructs.

Florida Standards Connections: MAFS.K12.MP.1: Make sense of problems and persevere in solving them.
MAFS.K12.MP.2: Reason abstractly and quantitatively.
MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others. [Viable arguments include evidence.]
MAFS.K12.MP.4: Model with mathematics.
MAFS.K12.MP.5: Use appropriate tools strategically.
MAFS.K12.MP.6: Attend to precision.
MAFS.K12.MP.7: Look for and make use of structure.
MAFS.K12.MP.8: Look for and express regularity in repeated reasoning.

LAFS.910.RST.1.1 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.

LAFS.910.RST.3.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.

LAFS.910.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

LAFS.910.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research.

For Students in Grades 11-12

LAFS.1112.RST.1.1Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

LAFS.1112.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks analyze the specific results based on explanations in the text.

LAFS.1112.RST.3.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.

LAFS.1112.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

LAFS.1112.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research.

Florida Standards Connections for Mathematical Practices

MAFS.K12.MP.1: Make sense of problems and persevere in solving them.
MAFS.K12.MP.2: Reason abstractly and quantitatively.
MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others. [Viable arguments include evidence.]
MAFS.K12.MP.4: Model with mathematics.
MAFS.K12.MP.5: Use appropriate tools strategically.
MAFS.K12.MP.6: Attend to precision.
MAFS.K12.MP.7: Look for and make use of structure.
MAFS.K12.MP.8: Look for and express regularity in repeated reasoning.

LAFS.910.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

LAFS.910.RST.3.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.

LAFS.910.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

LAFS.910.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research.
SC.912.N.2.4: Describe the measurable properties of waves and explain the relationships among them and how these properties change when the wave moves from one medium to another.

Remarks/Examples: Describe how models are used by scientists to explain observations of nature.

SC.912.N.2.5: Explore the Law of Conservation of Energy by differentiating among open, closed, and isolated systems and explain that the total energy in an isolated system is a conserved quantity.

Remarks/Examples: Recognize that a single universal step-by-step scientific method captures the complexity of doing science. A number of shared values and perspectives characterize a scientific approach.

MAFS.K12.MP.1: Make sense of problems and persevere in solving them, and MAFS.K12.MP.2: Reason abstractly and quantitatively.

SC.912.P.10.2: Weigh the merits of alternative strategies for solving a specific societal problem by comparing a number of different costs and benefits, such as human, economic, and environmental.

Remarks/Examples: Identify examples of technologies, objects, and processes that have been modified to advance society, and explain why and how they were modified. Discuss ethics in scientific research to advance society (e.g. global climate change, historical development of medicine and medical practices).

SC.912.P.10.20: Recognize that no single universal step-by-step scientific method captures the complexity of doing science. A number of shared values and perspectives characterize a scientific approach.

Remarks/Examples: Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period, reflection and refraction) and explain the relationships among them. Recognize that the source of all waves is a vibration and waves carry energy from one place to another. Distinguish between transverse and longitudinal waves in mechanical media, such as springs and ropes, and on the earth (seismic waves). Describe sound as a longitudinal wave whose speed depends on the properties of the medium in which it propagates.

SC.912.RST.1.1: Cite specific textual evidence to support analysis of scientific and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

Remarks/Examples: Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.

SC.912.RST.1.2: Use calorimetry to illustrate conservation of energy. Differentiate between the different types of systems and solve problems involving conservation of energy in simple systems (Physics). Explain how conservation of energy is important in chemical reactions with bond formation and bond breaking (Chemistry).

Remarks/Examples: Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

SC.912.RST.1.3: Describe instances in which scientists' varied backgrounds, talents, interests, and goals influence the inferences and thus the explanations that they make about observations of natural phenomena and describe that competing interpretations (explanations) of scientists are a strength of science as they are a source of new, testable ideas that have the potential to add new evidence to support one or another of the explanations.

Remarks/Examples: Explore the Law of Conservation of Energy by differentiating among open, closed, and isolated systems and explain that the total energy in an isolated system is a conserved quantity.

Remarks/Examples: Describe the measurable properties of waves and explain the relationships among them and how these properties change when the wave moves from one medium to another.

Remarks/Examples: Cite specific textual evidence to support analysis of scientific and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.

Evaluate hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

By the end of grade 12, read and comprehend science/technical texts in the grades 11–12 text complexity band independently and proficiently.

Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 11–12 topics, texts, and issues, building on others' ideas and expressing their own clearly and persuasively.

a. Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.

b. Work with peers to promote civil, democratic discussions and decision-making, set clear goals and deadlines, and establish individual roles as needed.

c. Propose conversations by posing and responding to questions that probe reasoning and evidence; ensure a hearing for a full range of positions on a topic or issue; clarify, verify, or challenge ideas and conclusions; and promote divergent and creative perspectives.

d. Respond thoughtfully to diverse perspectives; synthesize comments, claims, and evidence made on all sides of an issue; resolve contradictions when possible; and determine what additional information or research is required to deepen the investigation or complete the task.

Integrate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, orally) in order to make informed decisions and solve problems, evaluating the credibility and accuracy of each source and noting any discrepancies among the data.

Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric, assessing the stance, premises, links among ideas, word choice, points of emphasis, and tone used.

Present information, findings, and supporting evidence, conveying a clear and distinct perspective, such that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks.

Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Write arguments focused on discipline-specific content.

a. Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequences the claim(s), counterclaims, reasons, and evidence.

b. Develop claim(s) and counterclaims fairly and thoroughly, supplying the most relevant data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form that anticipates the audience's knowledge level, concerns, values, and possible biases.

c. Use words, phrases, and clauses as well as varied syntax to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.

d. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.

e. Provide a concluding statement or section that follows from or supports the argument presented.

Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

a. Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.

b. Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.

c. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.

d. Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers.

e. Provide a concluding statement or section that follows from and supports the information or explanation provided (e.g., articulating implications or the significance of the topic).

Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information.

Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overrelevance on any one source and following a standard format for citation.

Draw evidence from informational texts to support analysis, reflection, and research.

Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific purposes, tasks, and audiences.

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude, and using phase shift.

MAFS.912.N-Q.1.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. ★

MAFS.912.N-Q.1.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. ★

MAFS.912.S-ID.1.1: Represent data with plots on the real number line (dot plots, histograms, and box plots). ★

Remarks/Examples:
In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points.

MAFS.912.S-ID.1.2: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. ★

Remarks/Examples:
In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points.

MAFS.912.S-ID.1.3: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). ★

Remarks/Examples:
In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points.

ELD.K12.ELL.SC.1: English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science.

ELD.K12.ELL.SI.1: English language learners communicate for social and instructional purposes within the school setting.

Related Certifications

- Biology (Grades 6-12)
- Chemistry (Grades 6-12)
- Physics (Grades 6-12)
- Earth/Space Science (Grades 6-12)
- Science (Secondary Grades 7-12)

There are more than 1045 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: http://www.cpalms.org/Public/PreviewCourse/Preview/13108