GENERAL NOTES

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes:

Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

1. Ensuring wide reading from complex text that varies in length.
2. Making close reading and rereading of texts central to lessons.
3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
4. Emphasizing students supporting answers based upon evidence from the text.
5. Providing extensive research and writing opportunities (claims and evidence).

- Asking questions (for science) and defining problems (for engineering).
- Developing and using models.
- Planning and carrying out investigations.
- Analyzing and interpreting data.
- Using mathematics, information and computer technology, and computational thinking.
- Constructing explanations (for science) and designing solutions (for engineering).
- Engaging in argument from evidence.
- Obtaining, evaluating, and communicating information.

English Language Development ELD Standards Special Notes Section:

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link:

For additional information on the development and implementation of the ELD standards, please contact the Bureau of Student Achievement through Language Acquisition at sala@fldoe.org.

Additional Instructional Resources:

A.V.E. for Success Collection is provided by the Florida Association of School Administrators: http://www.fasa.net/4DCGI/cms/review.html?Action=CMS_Document&DocID=139. Please be aware that these resources have not been reviewed by CPALMS and there may be a charge for the use of some of them in this collection.

Course Standards

Integrate Standards for Mathematical Practice (MP) as applicable.
Identify patterns in the organization and distribution of matter in the universe and the forces that determine them.

Remarks/Examples:
Identify patterns that influence the formation, hierarchy, and motions of the various kinds of objects in the solar system and the role of gravity and inertia on these motions (include the Sun, Earth, and Moon, planets, satellites, comets, asteroids, star clusters, galaxies, galaxy clusters). Recognize that the universe contains many billions of galaxies, and each galaxy contains many billions of stars. Recognize that constellations are contrived associations of stars that do not reflect functional relationships in space.

Florida Standards Connections: MAFS.K12.MP.7: Look for and make use of structure.

SC.912.E.5.2:
Develop logical connections through physical principles, including Kepler's and Newton's Laws about the relationships and the effects of Earth, Moon, and Sun on each other.

Remarks/Examples:
Explain that Kepler's laws determine the orbits of objects in the solar system and recognize that Kepler's laws are a direct consequence of Newton's Law of Universal Gravitation and laws of Motion.

SC.912.E.5.6:
Define a problem based on a specific body of knowledge, for example: biology, chemistry, physics, and earth/space science, and do the following:
1. Pose questions about the natural world, (Articulate the purpose of the investigation and identify the relevant scientific concepts).
2. Conduct systematic observations, (Write procedures that are clear and repeatable. Identify observables and examine relationships between test (independent) variable and outcome (dependent) variable. Employ appropriate methods for accurate and consistent observations; conduct and record measurements at appropriate levels of precision. Follow safety guidelines).
3. Examine books and other sources of information to see what is already known, (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
4. Review what is known in light of empirical evidence, (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
5. Plan investigations, (Design and evaluate a scientific investigation).
6. Use tools to gather, analyze, and interpret data (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs), (Collect data or evidence in an organized way. Properly use instruments, equipment, and materials (e.g., scales, probeware, meter sticks, microscopes, computers) including set-up, calibration, technique, maintenance, and storage).
7. Pose answers, explanations, or descriptions of events, (Write procedures that are clear and replicable. Identify observables and examine relationships between test (independent) variable and outcome (dependent) variable. Employ appropriate methods for accurate and consistent observations; conduct and record measurements at appropriate levels of precision. Follow safety guidelines).
8. Generate explanations that explicate or describe natural phenomena (inferences), (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
9. Use appropriate evidence and reasoning to justify these explanations to others, (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
10. Communicate results of scientific investigations, and (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
11. Evaluate the merits of the explanations produced by others.

Remarks/Examples:
Florida Standards Connections for 6-12 Literacy in Science For Students in Grades 9-10
LAFS.910.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
LAFS.910.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
LAFS.910.RST.3.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
LAFS.910.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
LAFS.910.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research.

For Students in Grades 11-12
LAFS.1112.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
LAFS.1112.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks analyze the specific results based on explanations in the text.
LAFS.1112.RST.3.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
LAFS.1112.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
LAFS.1112.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research.

Florida Standards Connections for Mathematical Practices
Describe and explain what characterizes science and its methods.

Remarks/Examples:
Science is characterized by empirical observations, testable questions, formation of hypotheses, and experimentation that results in stable and replicable results, logical reasoning, and coherent theoretical constructs.

Florida Standards Connections: MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

SC.912.N.2.2: Identify which questions can be answered through science and which questions are outside the boundaries of scientific investigation, such as questions addressed by other ways of knowing, such as art, philosophy, and religion.

Remarks/Examples:
Identify scientific questions that can be disproved by experimentation/testing. Recognize that pseudoscience is a claim, belief, or practice which is presented as scientific, but does not adhere to strict standards of science (e.g., controlled variables, sample size, replicability, empirical and measurable evidence, and the concept of falsification).

Florida Standards Connections: MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

SC.912.N.2.4: Recognize that ideas with the most durable explanatory power become established theories, but scientific explanations are continually subjected to change in the face of new evidence.

Florida Standards Connections: MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

SC.912.N.2.5: Describe instances in which scientists' varied backgrounds, talents, interests, and goals influence the inferences and thus the explanations that they make about observations of natural phenomena and describe that competing interpretations (explanations) of scientists are a strength of science as they are a source of new, testable ideas that have the potential to add new evidence to support one or another of the explanations.

Remarks/Examples:
Recognize that scientific questions, observations, and conclusions may be influenced by the existing state of scientific knowledge, the social and cultural context of the researcher, and the observer's experiences and expectations. Identify possible bias in qualitative and quantitative data analysis.

SC.912.N.3.2: Describe the role consensus plays in the historical development of a theory in any one of the disciplines of science.

Remarks/Examples:
Recognize that scientific argument, disagreement, discourse, and discussion create a broader and more accurate understanding of natural processes and events.

Florida Standards Connections: MAFS.K12.MP.3: Construct viable arguments and critique the reasoning of others.

SC.912.N.3.3: Explain that scientific laws are descriptions of specific relationships under given conditions in nature, but do not offer explanations for those relationships.

Remarks/Examples:
Recognize that a scientific theory provides a broad explanation of many observed phenomena while a scientific law describes how something behaves.

SC.912.N.3.4: Recognize that theories do not become laws, nor do laws become theories; theories are well supported explanations and laws are well supported descriptions.

Remarks/Examples:
Recognize that theories do not become laws, theories explain laws. Recognize that not all scientific laws have accompanying explanatory theories.

SC.912.N.3.5: Describe the function of models in science, and identify the wide range of models used in science.
SC.912.N.3.5:
Remarks/Examples:
Describe how models are used by scientists to explain observations of nature.

SC.912.N.4.1:
Remarks/Examples:
Explain how scientific knowledge and reasoning provide an empirically-based perspective to inform society's decision making.

SC.912.P.8.1:
Remarks/Examples:
Determine the four states of matter.

SC.912.P.8.3:
Remarks/Examples:
Explore the scientific theory of atoms (also known as atomic theory) by describing changes in the atomic model over time and why those changes were necessitated by experimental evidence.

SC.912.P.10.1:
Remarks/Examples:
Differentiate between kinetic and potential energy. Recognize that energy cannot be created or destroyed, only transformed. Identify examples of transformation of energy: Heat to light in incandescent electric light bulbs, light to heat in laser drills. Electrical to sound in radios. Sound to electrical in microphones. Electrical to chemical in battery rechargers. Chemical to electrical in dry cells. Mechanical to electrical in generators (power plants). Nuclear to heat in nuclear reactors. Gravitational potential energy of a falling object is converted to kinetic energy then to heat and sound energy when the object hits the ground.

SC.912.P.10.2:
Remarks/Examples:
Use calorimetry to illustrate conservation of energy. Differentiate between the different types of systems and solve problems involving conservation of energy in simple systems (Physics). Explain how conservation of energy is important in chemical reactions with bond formation and bond breaking (Chemistry).

SC.912.P.10.3:
Remarks/Examples:
Compare and contrast work and power qualitatively and quantitatively.

SC.912.P.10.4:
Remarks/Examples:
Describe both qualitatively and quantitatively how work can be expressed as a change in mechanical energy, and the concept of power as the rate at which work is done per unit time. Recognize that when a net force, \(F \), acts through a distance on an object of mass \(m \), work is done on the object.

SC.912.P.10.5:
Remarks/Examples:
Derive the relationship between the average molecular kinetic energy and the temperature of a gas.

SC.912.P.10.10:
Remarks/Examples:
Recognize and discuss the effect of each force on the structure of matter and the evidence for it.

SC.912.P.10.13:
Remarks/Examples:
Using Coulomb's law, determine the force on a stationary charge due to other stationary charges, and explain that this force is many times greater than the gravitational force. Recognize the relationship between forces and their associated potential energies and that the electric field is directly related to the rate of change of the electric potential from point to point in space.

SC.912.P.10.14:
Remarks/Examples:
Describe band structure, valence electrons, and how the charges flow or rearrange themselves between conductors and insulators.

SC.912.P.10.15:
Remarks/Examples:
Investigate and explain the relationships among current, voltage, resistance, and power.
| SC.912.P.10.18 | Use Ohm's and Kirchhoff's laws to explain the relationships among circuits.
| SC.912.P.10.20 | Explore the theory of electromagnetism by comparing and contrasting the different parts of the electromagnetic spectrum in terms of wavelength, frequency, and energy, and relate them to phenomena and applications.
| SC.912.P.10.21 | Describe the measurable properties of waves and explain the relationships among them and how these properties change when the wave moves from one medium to another.
| SC.912.P.10.22 | Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period, reflection and refraction) and explain the relationships among them. Recognize that the source of all waves is a vibration and waves carry energy from one place to another. Distinguish between transverse and longitudinal waves in mechanical media, such as springs and ropes, and on the earth (seismic waves). Describe sound as a longitudinal wave whose speed depends on the properties of the medium in which it propagates.
| SC.912.P.12.1 | Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
| SC.912.P.12.2 | Distinguish between scalar and vector quantities and assess which should be used to describe an event.
| SC.912.P.12.3 | Describe Newton's law of universal gravitation in terms of the attraction between two objects, their masses, and the inverse square of the distance between them.
| SC.912.P.12.4 | Analyze the motion of an object in terms of its position, velocity, and acceleration (with respect to a frame of reference) as functions of time.
| SC.912.P.12.5 | Interpret and apply Newton's three laws of motion.
| SC.912.P.12.6 | Describe the gravitational force between two objects depends on their masses and the distance between them.
| SC.912.P.12.7 | Describe how the gravitational force between two objects depends on their masses and the distance between them.
| SC.912.P.12.8 | Recognize that nothing travels faster than the speed of light in vacuum which is the same for all observers no matter how they or the light source are moving.
| SC.912.P.12.9 | Recognize that time, length, and energy depend on the frame of reference.

LAFS.1112.RST.1.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

LAFS.1112.RST.1.2: Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.

LAFS.1112.RST.1.3: Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

LAFS.1112.RST.2.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics.

LAFS.1112.RST.2.5: Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.

Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.

Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

By the end of grade 12, read and comprehend science/technical texts in the grades 11–12 text complexity band independently and proficiently.

Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 11–12 topics, texts, and issues, building on others' ideas and expressing their own clearly and persuasively.

a. Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.

b. Work with peers to promote civil, democratic discussions and decision-making, set clear goals and deadlines, and establish individual roles as needed.

c. Propose conversations by posing and responding to questions that probe reasoning and evidence; ensure a hearing for a full range of positions on a topic or issue; clarify, verify, or challenge ideas and conclusions; and promote divergent and creative perspectives.

d. Respond thoughtfully to diverse perspectives; synthesize comments, claims, and evidence made on all sides of an issue; resolve contradictions when possible; and determine what additional information or research is required to deepen the investigation or complete the task.

Integrate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, orally) in order to make informed decisions and solve problems, evaluating the credibility and accuracy of each source and noting any discrepancies among the data.

Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric, assessing the stance, premises, links among ideas, word choice, points of emphasis, and tone used.

Present information, findings, and supporting evidence, conveying a clear and distinct perspective, such that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks.

Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Write arguments focused on discipline-specific content.

a. Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequencess the claim(s), counterclaims, reasons, and evidence.

b. Develop claim(s) and counterclaims fairly and thoroughly, supplying the most relevant data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form that anticipates the audience's knowledge level, concerns, values, and possible biases.

c. Use words, phrases, and clauses as well as varied syntax to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.

d. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.

e. Provide a concluding statement or section that follows from or supports the argument presented.

Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

a. Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.

b. Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.

c. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.

d. Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers.

e. Provide a concluding statement or section that follows from and supports the information or explanation provided (e.g., articulating implications or the significance of the topic).

Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information.

Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

Draw evidence from informational texts to support analysis, reflection, and research.

Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude, and using phase shift.

MAFS.912.G-MG.1.2: Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).

MAFS.912.N-Q.1.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

MAFS.912.N-Q.1.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

MAFS.912.N-VM.1.3: Solve problems involving velocity and other quantities that can be represented by vectors.

MAFS.912.S-ID.1.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).

MAFS.912.S-ID.1.2: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

MAFS.912.S-ID.1.3: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

MAFS.912.S-ID.1.4: Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

MAFS.912.S-ID.2.5: Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

ELD.K12.ELL.SC.1: English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science.

ELD.K12.ELL.SI.1: English language learners communicate for social and instructional purposes within the school setting.

Related Certifications

Science (Secondary Grades 7-12)
Physics (Grades 6-12)

There are more than 955 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: http://www.cpalms.org/Public/PreviewCourse/Preview/13116